Multi-Objective Disassembly Depth Optimization for End-of-Life Smartphones Considering the Overall Safety of the Disassembly Process

Author:

Chen Zepeng1,Li Lin1ORCID,Chu Xiaojing1,Yin Fengfu1,Li Huaqing1

Affiliation:

1. College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China

Abstract

The disassembly of end-of-life (EoL) products is of high concern in sustainability research. It is important to obtain reasonable disassembly depth during the disassembly process. However, the overall safety of the disassembly process is not considered during the disassembly depth optimization process, which leads to an inability to accurately obtain a reasonable disassembly depth. Considering this, a multi-objective disassembly depth optimization method for EoL smartphones considering the overall safety of the disassembly process is proposed to accurately determine a reasonable disassembly depth in this study. The feasible disassembly depth for EoL smartphones is first determined. The reasonable disassembly process for EoL smartphones is then established. A multi-objective function for disassembly depth optimization for EoL smartphones is established based on the disassembly profit per unit time, the disassembly energy consumption per unit time and the overall safety rate of the disassembly process. In order to increase solution accuracy and avoid local optimization, an improved teaching–learning-based optimization algorithm (ITLBO) is proposed. The overall safety of the disassembly process, disassembly time, disassembly energy consumption and disassembly profit are used as the criteria for the fuzzy analytic hierarchy process (AHP) to evaluate the disassembly depth solution. A case of the ‘Xiaomi 4’ smartphone is used to verify the applicability of the proposed method. The results show that the searchability of the non-inferior solution and the optimal solution of the proposed method are improved. The convergence speeds of the ITLBO algorithm are 50.00%, 33.33% and 30.43% higher than those of the TLBO algorithm, and the optimal solution values of the ITLBO algorithm are 3.91%, 5.10% and 3.45% higher than those of the TLBO algorithm in three experiments of single objective optimization.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3