Detection of Relative Afferent Pupillary Defect and Its Correlation with Structural and Functional Asymmetry in Patients with Glaucoma Using Hitomiru, a Novel Hand-Held Pupillometer

Author:

Nakamura Makoto1ORCID,Sakamoto Mari1ORCID,Ueda Kaori1ORCID,Okuda Mina1,Takano Fumio1,Yamada-Nakanishi Yuko1

Affiliation:

1. Division of Ophthalmology, Department of Surgery, Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-cho, Kobe 650-0017, Japan

Abstract

Patients with asymmetric glaucomatous optic neuropathy (GON) present a relative afferent pupillary defect (RAPD) in the eye with more advanced damage. Although useful, pupillometric RAPD quantification is not widely used as it is not portable. Whether asymmetry of the peripapillary capillary perfusion density (CPD) detected using optical coherence tomography angiography correlates with the severity of RAPD remains unknown. This study assessed RAPD in 81 patients with GON using Hitomiru, a novel hand-held infrared binocular pupillometer. The correlation and ability to detect clinical RAPD based on the swinging flash light test of two independent RAPD parameters (the maximum pupil constriction ratio and the constriction maintenance capacity ratio) were assessed. The coefficient of determination (R2) was calculated between each of the two RAPD parameters and asymmetry of the circumpapillary retinal nerve fiber layer thickness (cpRNFLT), ganglion cell layer/inner plexiform layer thickness (GCL/IPLT), and CPD. The two RAPD parameters showed a correlation coefficient of 0.86 and areas under the receiver operating characteristic (ROC) curve of 0.85–0.88, with R2 being 0.63–0.67 for the visual field, 0.35–0.45 for cpRNFLT, 0.45–0.49 for GCL/IPLT, and 0.53–0.59 for CPD asymmetry. Hitomiru has high discriminatory performance in detecting RAPD in patients with asymmetric GON. CPD asymmetry may better correlate with RAPD than cpRNFLT and GCL/IPLT asymmetry.

Funder

the Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3