Thermophysical Profile of Industrial Graphene Water-Based Nanofluids

Author:

Gal Soulayma12ORCID,Cabaleiro David3ORCID,Hassen Walid2ORCID,Nasri Anaghim4,Lafue Yannick4,Pham-Huu Cuong5,Ba Housseinou4,Estellé Patrice1ORCID

Affiliation:

1. LGCGM, University Rennes, 35000 Rennes, France

2. LMES, Université de Monastir, Monastir 5000, Tunisia

3. CINBIO, Universidad de Vigo, 36310 Vigo, Spain

4. BLACKLEAF SAS, 67400 Illkirch-Graffenstaden, France

5. ICPPEES, Université de Strasbourg et Centre National de Recherche Scientifique, 67000 Strasbourg, France

Abstract

The exceptional properties of high-grade graphene make it an ideal candidate for thermal dissipation and heat exchange in energy applications and nanofluid development. Here, we present a comprehensive study of few-layer graphene (FLG) nanofluids prepared in an industrial context. FLG nanofluids were synthesized through an ultrasound-assisted mechanical exfoliation process of graphite in water with a green solvent. This method produces FLG of high structural quality and stable nanofluids, as demonstrated by electron microscope, dynamic light scattering and ζeta potential analyses. Thermal conductivity measurements of FLG-based nanofluids were conducted in the temperature range of 283.15 K to 313.15 K, with FLG concentrations ranging from 0.005 to 0.200% in wt. The thermal conductivity of FLG nanofluids is up to 20% higher than water. The modeling of nanofluid thermal conductivity reveals that this enhancement is supported by the influence of the thermal resistance at the FLG interface, and the content, average dimensions and flatness of FLG sheets; this latter varying with the FLG concentration in the nanofluid. Additionally, the density and heat capacity of FLG suspensions were measured and compared with theoretical models, and the rheological behavior of FLG nanofluids was evaluated. This behavior is mainly Newtonian, with a weak 5% viscosity increase.

Funder

PHC Utique

Rennes Métropole

“Juan de la Cierva” contract

Spanish “Ministerio de Ciencia e Innovación”

European Union NextGenerationEU/PRTR

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3