Variations in Cold Resistance and Contents of Bioactive Compounds among Dendrobium officinale Kimura et Migo Strains

Author:

Bao Hexigeduleng12ORCID,Bao Hainan1,Wang Yu1,Wang Feijuan1ORCID,Jiang Qiong1,Li Hua2,Ding Yanfei1,Zhu Cheng1

Affiliation:

1. Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou 310018, China

2. College of Engineering, Nanjing Agricultural University, Nanjing 210031, China

Abstract

Dendrobium officinale is a valuable traditional Chinese herbal plant that is both medicinal and edible. However, the yield of wild Dendrobium officinale is limited. Adverse stress affects the growth, development, and yield of plants, among which low temperature is the primary limiting factor for introducing Dendrobium officinale to high-latitude areas and expanding the planting area. Therefore, this study aims to explore the variations in growth ability, cold resistance, and contents of bioactive compounds among different Dendrobium officinale strains. Four strains of Dendrobium officinale were selected as experimental materials and were subjected to low-temperature stress (4 °C). The agronomic traits, physiological indices, as well as the expressions of cold resistance-related genes (HSP70, DcPP2C5, DoCDPK1, and DoCDPK6) in the roots and leaves of Dendrobium officinale, were determined. The contents of bioactive compounds, including polysaccharides, flavonoids, and phenols were also measured. Compared with the other strains, Xianju had the highest seed germination and transplantation-related survival rates. Under low-temperature stress, Xianju exhibited the strongest cold resistance ability, as revealed by the changes in water contents, chlorophyll levels, electrical conductivities, enzyme activities, and expressions of the cold resistance-related genes. Additionally, the polysaccharide content of Xianju increased the most, while the stem flavonoid and leaf phenol contents were elevated in all four strains under cold treatment. Therefore, selecting excellent performing strains is expected to expand the planting area, improve the yield, and increase the economic benefits of Dendrobium officinale in high latitude areas with lower temperatures.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Fundamental Research Funds of China Jiliang University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3