A New Plant Active Polysaccharide from Nicotiana Improves the Lead-Led Impairment of Spatial Memory in Mice by Modulating the Gut Microbiota and IL-6

Author:

Yang Ruili1,Zhu Feng1,Mo Wanying1,Li Huailong1,Zhu Dongliang2,He Zengyang2,Ma Xiaojing1

Affiliation:

1. School of Food and Bioengineering, Hefei University of Technology, Hefei 230000, China

2. Anhui Provincial Key Laboratory of Aerosol Analysis, Regulation and Biological Effect, Hefei 230000, China

Abstract

Active polysaccharides from plants are broadly applied in the food and health industry. The purpose of this study is to identify a new plant active polysaccharide and to investigate its role in modulating spatial memory. Ultrasonics and DEAE-52 chromatography were used to separate and purify the plant active polysaccharide (PAP). Mice were exposed to 100 ppm of lead acetate from birth to 7 weeks old to establish the memory impairment model. PAPs with concentrations of 200 or 400 ppm were fed to the subject mice each day after weaning in a spatiotemporally separated fashion. At the end of the intervention, mice were examined using the Morris water maze test, microbiome sequencing, cytokine profiling and protein analysis. The derived active polysaccharide was constituted by β-anomeric carbon, indicating a new form of PAP. The PAP significantly ameliorates the memory impairment caused by postnatal lead exposure, as evidenced by the preferred coverage of the test mouse in the hidden platform, demonstrating salient neuroregulatory activity. In terms of the gut microbiome in response to PAP treatment, it was found that the 400 ppm PAP reversed the gut dysbiosis, producing a comparable structure to the intact animals, represented by the relative abundance of Firmicutes and Muribaculum, Desulfovibrio, etc. For cytokines, the PAP reversed the plasma levels of IL-6, suggesting an anti-inflammatory trend in the context of proinflammation caused by lead invasion. By injecting an IL-6 antagonist, Tocilizumab, into the deficient mice, the spatial memory was significantly repaired, which demonstrates the central roles of IL-6 in mediating the positive effect of the PAP. Finally, a histone modification mark, H3K27me3, was found to be potent in responding to the signals conveyed by the PAP. The PAP could improve the memory deficits by remodeling the gut–brain axis centered at the microbiota and IL-6, which is regarded as an important cytokine-modulating brain activity. This is an intriguing instance linking neuromodulation with the active polysaccharide, shedding light on the innovative applications of plant polysaccharides due to the scarcity of similar phenotypic connections.

Funder

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3