Synergistic Bactericidal Effects of Quaternary Ammonium Compounds with Essential Oil Constituents

Author:

Pedreira Adrián123ORCID,Fernandes Susana3ORCID,Simões Manuel34ORCID,García Míriam R.2ORCID,Vázquez José Antonio1ORCID

Affiliation:

1. Group of Recycling and Valorization of Waste Materials (REVAL), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain

2. Biosystems and Bioprocess Engineering Group (Bio2Eng), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain

3. LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

4. ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Abstract

Antimicrobial tolerance is a significant concern in the food industry, as it poses risks to food safety and public health. To overcome this challenge, synergistic combinations of antimicrobials have emerged as a potential solution. In this study, the combinations of two essential oil constituents (EOCs), namely carvacrol (CAR) and eugenol (EUG), with the quaternary ammonium compounds (QACs) benzalkonium chloride (BAC) and didecyldimethylammonium chloride (DDAC) were evaluated for their antimicrobial effects against Escherichia coli and Bacillus cereus, two common foodborne bacteria. The checkerboard assay was employed to determine the fractional inhibitory concentration index (FICI) and the fractional bactericidal concentration index (FBCI), indicating the presence of bactericidal, but not bacteriostatic, synergy in all QAC–EOC combinations. Bactericidal synergism was clearly supported by Bliss independence analysis. The bactericidal activity of the promising synergistic combinations was further validated by time–kill curves, achieving a >4-log10 reduction of initial bacterial load, which is significant compared to typical industry standards. The combinations containing DDAC showed the highest efficiency, resulting in the eradication of bacterial population in less than 2–4 h. These findings emphasize the importance of considering both bacteriostatic and bactericidal effects when evaluating antimicrobial combinations and the potential of EOC–QAC combinations for sanitization and disinfection in the food industry.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3