Optimal Configuration of Array Elements for Hybrid Distributed PA-MIMO Radar System Based on Target Detection

Author:

Qi ChengORCID,Xie Junwei,Zhang Haowei,Ding Zihang,Yang XiaoORCID

Abstract

This paper establishes a hybrid distributed phased array multiple-input multiple-output (PA-MIMO) radar system model to improve the target detection performance by combining coherent processing gain and spatial diversity gain. First, the radar system signal model and array space configuration model for the PA-MIMO radar are established. Then, a novel likelihood ratio test (LRT) detector is derived based on the Neyman–Pearson (NP) criterion in a fixed noise background. It can jointly optimize the coherent processing gain and spatial diversity gain of the system by implementing subarray level and array element level optimal configuration at both receiver and transmitter ends in a uniform blocking manner. On this basis, three typical optimization problems are discussed from three aspects, i.e., the detection probability, the effective radar range, and the radar system equipment volume. The approximate closed-form solutions of them are constructed and solved by the proposed quantum particle swarm optimization-based stochastic rounding (SR-QPSO) algorithm. Through the simulations, it is verified that the proposed optimal configuration of the hybrid distributed PA-MIMO radar system offers substantial improvements compared to the other typical radar systems, detection probability of 0.98, and an effective range of 1166.3 km, which significantly improves the detection performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributed Phased Multiple-Input Multiple-Output Radars for Early Warning: Observation Area Generation;Remote Sensing;2024-08-19

2. Performance Evaluation of Coherent MIMO Radar Assisted with Space-Time Coding;2023 9th International Conference on Computer and Communication Engineering (ICCCE);2023-08-15

3. Networked Radar System: A More Advanced Radar Detection Platform;2023 3rd International Conference on Frontiers of Electronics, Information and Computation Technologies (ICFEICT);2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3