Multi-Fracture Propagation Considering Perforation Erosion with Respect to Multi-Stage Fracturing in Shale Reservoirs

Author:

Tan Lin1,Xie Lingzhi2,He Bo2,Zhang Yao1

Affiliation:

1. College of Architecture and Environment, Sichuan University, Chengdu 610065, China

2. Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China

Abstract

Shale gas is considered a crucial global energy source. Hydraulic fracturing with multiple fractures in horizontal wells has been a crucial method for stimulating shale gas. During multi-stage fracturing, the fracture propagation is non-uniform, and fractures cannot be induced in some clusters due to the influence of stress shadow. To improve the multi-fracture propagation performance, technologies such as limited-entry fracturing are employed. However, perforation erosion limits the effect of the application of these technologies. In this paper, a two-dimensional numerical model that considers perforation erosion is established based on the finite element method. Then, the multi-fracture propagation, taking into account the impact of perforation erosion, is studied under different parameters. The results suggest that perforation erosion leads to a reduction in the perforation friction and exacerbates the uneven propagation of the fractures. The effects of erosion on multi-fracture propagation are heightened with a small perforation diameter and perforation number. However, reducing the perforation number and perforation diameter remains an effective method for promoting uniform fracture propagation. As the cluster spacing is increased, the effects of erosion on multi-fracture propagation are aggravated because of the weakened stress shadow effect. Furthermore, for a given volume of fracturing fluid, although a higher injection rate is associated with a shorter injection time, the effects of erosion on the multi-fracture propagation are more severe at a high injection rate.

Funder

National Natural Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3