Restoration of Developmental Competence in Low-Quality Porcine Cumulus–Oocyte Complexes through the Supplementation of Sonic Hedgehog Protein during In Vitro Maturation

Author:

Jeong Pil-Soo1,Kang Hyo-Gu1,Song Bong-Seok1ORCID,Kim Sun-Uk12,Sim Bo-Woong1ORCID,Lee Sanghoon3ORCID

Affiliation:

1. Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea

2. Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea

3. Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea

Abstract

The sonic hedgehog (SHH) pathway is an important signaling pathway for mammalian ovarian folliculogenesis and oocyte maturation. A previous study demonstrated that low-quality porcine cumulus–oocyte complexes (COCs) have low developmental competence, with lower SHH signaling protein expression before and after in vitro maturation (IVM) than high-quality COCs. However, there is no reported evidence on the restorative effects of SHH protein supplementation during the IVM of low-quality porcine COCs. Therefore, this study investigated the effects of SHH protein supplementation on the IVM of low-quality porcine COCs, as assessed by brilliant cresyl blue (BCB) staining. To examine this, we designed four groups: (i) BCB− (low-quality), (ii) BCB− + SHH, (iii) BCB+ (high-quality), and (iv) BCB+ + SHH. While the supplementation of SHH protein with high-quality COCs had no effect, supplementation with low-quality COCs significantly improved cumulus cell expansion, metaphase II rate, and subsequent embryo development following parthenogenetic activation. Our results provide the first evidence that the low developmental competence of low-quality porcine COCs can be improved by supplementation with the SHH protein. These results indicate that an active SHH signaling pathway is required for the acquisition of developmental competence in porcine COCs.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korea government

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3