A Novel Gliotransmitter, L-β-Aminoisobutyric Acid, Contributes to Pathophysiology of Clinical Efficacies and Adverse Reactions of Clozapine

Author:

Fukuyama Kouji1,Motomura Eishi1,Okada Motohiro1ORCID

Affiliation:

1. Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan

Abstract

Clozapine is listed as one of the most effective antipsychotics and has been approved for treating treatment-resistant schizophrenia (TRS); however, several type A and B adverse reactions, including weight gain, metabolic complications, cardiotoxicity, convulsions, and discontinuation syndromes, exist. The critical mechanisms of clinical efficacy for schizophrenia, TRS, and adverse reactions of clozapine have not been elucidated. Recently, the GABA isomer L-β-aminoisobutyric acid (L-BAIBA), a protective myokine in the peripheral organs, was identified as a candidate novel transmission modulator in the central nervous system (CNS). L-BAIBA activates adenosine monophosphate-activated protein kinase (AMPK) signalling in both the peripheral organs and CNS. Activated AMPK signalling in peripheral organs is an established major target for treating insulin-resistant diabetes, whereas activated AMPK signalling in the hypothalamus contributes to the pathophysiology of weight gain and metabolic disturbances. Clozapine increases L-BAIBA synthesis in the hypothalamus. In addition, the various functions of L-BAIBA in the CNS have recently been elucidated, including as an activator of GABA-B and group-III metabotropic glutamate (III-mGlu) receptors. Considering the expressions of GABA-B and III-mGlu receptors (localised in the presynaptic regions), the activation of GABA-B and III-mGlu receptors can explain the distinct therapeutic advantages of clozapine in schizophrenia or TRS associated with N-methyl-D-aspartate (NMDA) receptor disturbance compared with other atypical antipsychotics via the inhibition of the persistent tonic hyperactivation of thalamocortical glutamatergic transmission in the prefrontal cortex. L-BAIBA has also been identified as a gliotransmitter, and a detailed exploration of the function of L-BAIBA in tripartite synaptic transmission can further elucidate the pathophysiology of effectiveness for treating TRS and/or specific adverse reactions of clozapine.

Funder

Japan Society for the Promotion of Science

Japan Epilepsy Research Foundation

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Reference168 articles.

1. Antipsychotic medication in schizophrenia: A review;Lally;Br. Med. Bull.,2015

2. Schizophrenia and Other Psychotic Disorders in Diagnostic and Statistical Manual of Mental Disorders (DSM)-5: Clinical Implications of Revisions from DSM-IV;Tandon;Indian J. Psychol. Med.,2014

3. Schizofreniespectrum en andere psychotische stoornissen in de DSM-5;Tan;Tijdschr. Voor Psychiatr.,2014

4. Predicting response to clozapine;Hu;CNS Drugs,1999

5. Clozapine for the treatment-resistant schizophrenic: A double-blind comparison with chlorpromazine;Kane;Arch. Gen. Psychiatry,1988

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3