Flaxseed Supplementation in Chicken Feed Accelerates Salmonella enterica subsp. enterica Serovar Enteritidis Clearance, Modulates Cecum Microbiota, and Influences Ovarian Gene Expression in Laying Hens

Author:

Wang De123,Ma Boheng123,Liao Ziwei123,Li Wenjing123,Zhang Tiejun123,Lei Changwei123ORCID,Wang Hongning123

Affiliation:

1. College of Life Sciences, Sichuan University, Chengdu 610044, China

2. Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu 610064, China

3. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China

Abstract

Salmonella is a foodborne pathogen that poses a serious threat to both human and animal health and food safety. Flaxseed is rich in unsaturated fatty acids; has anti-metabolic syndrome, anti-inflammatory, and neuroprotective properties; and may be a potential source of feed additives. To investigate the impact of flaxseed on Salmonella-infected laying hens, we administered Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) after adding flaxseed to the feed of laying hens (15% [750 mg/kg]). S. Enteritidis colonization was reduced and its clearance was accelerated from the laying hens. Furthermore, flaxseed supplementation mitigated the damage to the ileum caused by S. Enteritidis. We analyzed alterations in intestinal flora through 16S rRNA amplicon sequencing. S. Enteritidis infection increased the abundance of Akkermansia and triggered the host inflammatory response. Conversely, the addition of flaxseed to the feed increased the abundance of beneficial intestinal bacteria, such as Lactobacilli and Bacteroides. Ovarian health is important for egg production performance in laying hens and our findings indicate that S. Enteritidis can persist in the ovaries for an extended period. Therefore, we further performed transcriptome sequencing analysis of ovarian tissues on day seven after S. Enteritidis infection. S. Enteritidis infection leads to altered ovarian gene expression, including the downregulation of lipid metabolism and growth and development genes and the upregulation of host immune response genes in laying hens. The upregulation of genes associated with growth and development may have stimulated ovarian growth and development.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Central Government Guiding Local Science and Technology Development

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3