Classification of Microseismic Signals Using Machine Learning

Author:

Chen Ziyang1,Cui Yi12,Pu Yuanyuan13,Rui Yichao1,Chen Jie13,Mengli Deren1,Yu Bin2

Affiliation:

1. School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China

2. Zhalainuoer Coal Industry Co., Ltd., Hulunbuir 021410, China

3. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China

Abstract

The classification of microseismic signals represents a fundamental preprocessing step in microseismic monitoring and early warning. A microseismic signal source rock classification method based on a convolutional neural network is proposed. First, the characteristic parameters of the microseismic signals are extracted, and a convolutional neural network is constructed for the analysis of these parameters; then, the mapping relationship model between the characteristic parameters of the microseismic signals and the rock class is established. The feasibility of the proposed method in differentiating acoustic emission signals under different load conditions is verified by using acoustic emission data from laboratory uniaxial compression tests, Brazilian splitting tests, and shear tests. In the three distinct laboratory experiments, the proposed method achieved a source rock classification accuracy of greater than 90% for acoustic emission signals. The proposed and verified method provides a new basis for the preprocessing of microseismic signals.

Funder

National Natural Science Foundation of China

Central Universities Basic Research Funding Projects

Huaneng Group headquarters technology projects

Postdoctoral Fellowship Program of CPSF

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3