Biocontrol Potential of Endophytic Actinobacteria against Fusarium solani, the Causal Agent of Sudden Decline Syndrome on Date Palm in the UAE

Author:

Alblooshi Aisha A.ORCID,Purayil Gouthaman P.,Saeed Esam Eldin,Ramadan Gaber A.,Tariq Saeed,Altaee Amna S.,El-Tarabily Khaled A.ORCID,AbuQamar Synan F.ORCID

Abstract

Thirty-one endophytic streptomycete and non-streptomycete actinobacteria were isolated from healthy date palm root tissues. In vitro screening revealed that the antifungal action of isolate #16 was associated with the production of cell-wall degrading enzymes, whereas with diffusible antifungal metabolites in isolate #28, albeit their production of volatile antifungal compounds. According to the 16S rRNA gene sequencing, isolates #16 and #28 were identified as Streptomyces polychromogenes UAE2 (Sp; GenBank Accession #: OK560620) and Streptomyces coeruleoprunus UAE1 (Sc; OK560621), respectively. The two antagonists were recovered from root tissues until 12 weeks after inoculation, efficiently colonized root cortex and xylem vessels, indicating that the date palm roots are a suitable habitat for these endophytic isolates. At the end of the greenhouse experiments, the development of sudden decline syndrome (SDS) was markedly suppressed by 53% with the application of Sp and 86% with Sc, confirming their potential in disease management. Results showed that the estimated disease severity indices in diseased seedlings were significantly (p < 0.05) reduced from 4.75 (scale of 5) to 2.25 or 0.67 by either Sp or Sc, respectively. In addition, conidial numbers of the pathogen significantly (p < 0.05) dropped by 38% and 76% with Sp and Sc, respectively, compared to infected seedlings with F. solani (control). Thus, the suppression of disease symptoms was superior in seedlings pre-inoculated with S. coeruleoprunus, indicating that the diffusible antifungal metabolites were responsible for F. solani retardation in these plants. This is the first report of actinobacteria naturally existing in date palm tissues acting as microbial antagonists against SDS on date palm.

Funder

Abu Dhabi Department of Education and Knowledge

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3