Improvement of Removal Rates for Iron and Manganese in Groundwater Using Dual-Media Filters Filled with Manganese-Oxide-Coated Sand and Ceramic in Nepal

Author:

Shrestha Ankit Man1,Kazama Shinobu2,Sawangjang Benyapa1ORCID,Takizawa Satoshi1ORCID

Affiliation:

1. Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan

2. Department of Socio-Cultural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan

Abstract

Iron and manganese in groundwater impair the quality of drinking water; however, the rates of iron and manganese removal with conventional aeration and rapid sand filtration (RSF) processes vary extensively. Five full-scale aeration–RSF processes in Nepal also showed varying efficiencies of iron and manganese removal; while the iron concentration was below the national standard (0.30 mg/L) in 31 out of the 37 treated waters, the manganese concentration was higher than the standard (0.20 mg/L) in all of the treated waters. Re-aeration and stirring of the treated water did not oxidize soluble manganese, and this caused the poor removal rates for manganese. Bench-scale dual-media filters comprising anthracite on top of sand/ceramic layers with dosages of poly aluminum chloride and chlorine worked well by removing coagulated iron in the anthracite layer and then removing manganese in the sand/ceramic layers. A manganese-oxide-coated ceramic filter provided the highest manganese removal from 1.10 mg/L to <0.01 mg/L, followed by manganese-oxide-coated sand and quartz sand. Increasing the pH from 7.5 to 9.0 stabilized the manganese removal. Therefore, we propose a re-design of the present treatment processes and the selection of suitable filter media for better removal of iron and manganese.

Funder

Japan International Cooperation Agency

University of Tokyo

Japan Society for the Promotion of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3