Cooperation between Lactococcus lactis NRRL B-50571 and NRRL B-50572 for Aroma Formation in Fermented Milk

Author:

Beltrán-Barrientos Lilia M.ORCID,Garcia Hugo S.,Reyes-Díaz RicardoORCID,Estrada-Montoya María C.,Torres-Llanez María J.,Hernández-Mendoza Adrián,González-Córdova Aarón F.,Vallejo-Cordoba Belinda

Abstract

The aim of the present study was to characterize the aroma and volatile profiles of milk fermented by wild Lactococcus lactis NRRL B-50571 (FM-571) and NRRL B-50572 (FM-572) and co-fermented with both strains (co-FM). Milks fermented by these strains have been reported to have an antihypertensive effect, yet their sensory characteristics, which are of great importance for consumer acceptance of functional foods, have not been studied. In the study, volatiles were determined using solid-phase microextraction gas chromatography mass spectrometry (SPME-GC-MS) and aroma was determined by quantitative descriptive sensory analysis (QDA). Volatile compounds identified in FM-571, FM-572, and co-FM were mainly acids, alcohols, aldehydes, and ketones. FM-571 showed higher total relative volatile abundance than FM-572 or co-FM. Furthermore, the concentrations of specific amino acids (aa) were lower in FM-571 and co-FM than in FM-572. Thus, these results suggested that FM-571 or co-FM are more efficient in transforming specific aa into the corresponding volatiles than FM-572. Indeed, several alcohols and aldehydes, associated with the catabolism of these aa, were found in FM-571 and co-FM, but not in FM-572. Additionally, QDA showed that FM-571 and co-FM presented higher yeasty and cheesy aroma descriptors than FM-572. Also, total aroma intensity scores for FM-571 were higher than those for co-FM or FM-572. Thus, results suggested that the combination of these two specific wild L. lactis strains may complement amino acid catabolic routes that resulted in the enhancement or attenuation of aroma production of single strains, presenting new possibilities for the preparation of custom-made starter cultures.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3