An Experimental Study on Mechanical Properties for the Static and Dynamic Compression of Concrete Eroded by Sulfate Solution

Author:

Yao AoORCID,Xu Jinyu,Xia WeiORCID

Abstract

The mechanical properties of the static and dynamic compression of concrete eroded by a 15% sodium sulfate solution were explored with a 70-mm-diameter true triaxial static-dynamic comprehensive loading test system, and an analysis of the weakening mechanisms for the degree of macroscopic damage and microscopic surface changes of eroded concrete were conducted in combination with damage testing based on relevant acoustic characteristics and SEM scanning. The experience obtained in this paper is used to analyze and solve the problem that the bearing capacity of concrete buildings is weakened due to the decrease in durability under the special conditions of sulfate erosion. The results showed that, in a short time, the properties of concrete corroded by sulfate solution were improved to a certain extent due to continuous hydration. When the corrosion time was prolonged, the internal concrete structure was destroyed after it was eroded by sulfate, and its dynamic and static strength, deformability, and energy absorption were reduced to differing degrees, thus greatly inhibiting the overall mechanical performance of concrete; the dynamic compressive strength changed with strain that exhibited a significant strain rate effect; and, under the influence of sulfate erosion and hydration, the longitudinal wave velocity increased first and then decreased. The longitudinal wave velocity was slower than that of concrete under normal environment and distilled water immersion condition. SEM and acoustic wave analysis indicated that the internal concrete structure was destroyed after it was eroded by sulfate, and its dynamic and static strength, deformability, and energy absorption were reduced to differing degrees, thus greatly inhibiting the overall mechanical performance of concrete.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3