Assessment of Dimensional Stability, Biodegradability, and Fracture Energy of Bio-Composites Reinforced with Novel Pine Cone

Author:

Jha Kanishka,Tyagi Yogesh K.,Kumar RajeevORCID,Sharma ShubhamORCID,Huzaifah Muhammad Roslim MuhammadORCID,Li ChangheORCID,Ilyas Rushdan AhmadORCID,Dwivedi Shashi Prakash,Saxena AmbujORCID,Pramanik Alokesh

Abstract

In this investigation, biodegradable composites were fabricated with polycaprolactone (PCL) matrix reinforced with pine cone powder (15%, 30%, and 45% by weight) and compatibilized with graphite powder (0%, 5%, 10%, and 15% by weight) in polycaprolactone matrix by compression molding technique. The samples were prepared as per ASTM standard and tested for dimensional stability, biodegradability, and fracture energy with scanning electron micrographs. Water-absorption and thickness-swelling were performed to examine the dimensional stability and tests were performed at 23 °C and 50% humidity. Results revealed that the composites with 15 wt % of pine cone powder (PCP) have shown higher dimensional stability as compared to other composites. Bio-composites containing 15–45 wt % of PCP with low graphite content have shown higher disintegration rate than neat PCL. Fracture energy for crack initiation in bio-composites was increased by 68% with 30% PCP. Scanning electron microscopy (SEM) of the composites have shown evenly-distributed PCP particles throughout PCL-matrix at significantly high-degrees or quantities of reinforcing.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3