Numerical Investigation of the Effects of Stress Heterogeneity on the Propagation Behaviors of Hydraulic Fractures in a Shale Oil Reservoir

Author:

Zhang Shikun12,Chen Zuo12,Wang Xiaohui12,Zhao Xuyang3,Lin Jiaying4,Zhu Bolong4,Wen Qian5,Jing Qi6

Affiliation:

1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 102206, China

2. Sinopec Research Institute of Petroleum Engineering Co., Ltd., Beijing 102206, China

3. Geological Research Institute of CNPC Logging Company Limited, Xi’an 710000, China

4. Petroleum and Gas Engineering, School of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China

5. Beijing Gas Group Co., Ltd., Beijing 100034, China

6. Beijing Gas Energy Development Co., Ltd., Beijing 100012, China

Abstract

Minimum principal stress is a key factor governing the hydraulic fracturing behaviors in shale oil reservoirs. Due to the existence of stress heterogeneity, the hydraulic fracture growth and footprints can be affected, and the hydraulic fracturing efficacy can be consequently altered. This phenomenon is especially common during the development of shale oil reservoirs associated with continental sedimentary facies. This study uses a numerical workflow to analyze the effect of stress heterogeneity on hydraulic fracture growth. The numerical workflow consists of an open-source planar hydraulic fracturing model and a derived coupled flow and geomechanics model, which can address the effect of minimum principal stress heterogeneity on hydraulic fracturing. Two types of stress heterogeneity are considered: stress heterogeneity caused by legacy production in the horizontal direction and stress heterogeneity caused by high-stress interlayers in the vertical direction. Simulation results indicate that stress heterogeneity in the horizontal and vertical directions leads to asymmetric fracture growth horizontally and vertically. The corresponding fracture footprints and widths also become asymmetric accordingly. Thin interlayers cannot fully limit the fracture growth, and the fracture height growth can still penetrate through. When the high-stress interlayers are thick enough, the fracture cannot penetrate through them vertically, while the corresponding fracture growth is no longer highly sensitive to the thickness of the interlayer.

Funder

National Natural Science Foundation of China

CNPC Innovation Fund

State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3