A Novel In Vitro Simulator to Investigate Promotion of Reconstruction of Damaged Neuronal Cell Colony Differentiated from iPS Cells with the Aid of Micro Dynamic Stimulation

Author:

Kosawada Tadashi,Kitsunai Taku,Feng Zhonggang,Goto Kaoru

Abstract

Neuronal cells are equipped with the function of a sensor that senses stimulation and elongates neurites to connect nearby neuronal cells in forming a neuronal network, as they are generally said to be hard to recover from physical damage, such as in the case of a spinal cord injury. Therefore, in this study, a novel in vitro simulator in which micro dynamic stimulations are applied to a damaged neuronal cell colony artificially is proposed to investigate the possibility of promoting the reconstruction of damaged neuronal cells on a colony basis. A neuronal cell colony differentiated from iPS cells is physically damaged by cutting off treatment, and micro dynamic stimulations are applied to the colony by utilizing a developed mini-vibration table system. NeuroFluor NeuO is used to establish a method for fluorescent staining of the living neuronal cells, and morphologies of the reconstructing neurons are analysed, revealing a relationship between the stimulation and the reconstructing process of the damaged neurons. It is found that significant differences are observed in the reconstructing efficiency between the statically cultured damaged neuronal cell colony and the dynamically stimulated one. The results suggest that applying appropriate micro dynamic stimulations is a promising approach to promote the reconstruction of a damaged neuronal cell colony.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3