A Framework for Prediction of Household Energy Consumption Using Feed Forward Back Propagation Neural Network

Author:

Fayaz Muhammad,Shah Habib,Aseere Ali,Mashwani Wali,Shah AbdulORCID

Abstract

Energy is considered the most costly and scarce resource, and demand for it is increasing daily. Globally, a significant amount of energy is consumed in residential buildings, i.e., 30–40% of total energy consumption. An active energy prediction system is highly desirable for efficient energy production and utilization. In this paper, we have proposed a methodology to predict short-term energy consumption in a residential building. The proposed methodology consisted of four different layers, namely data acquisition, preprocessing, prediction, and performance evaluation. For experimental analysis, real data collected from 4 multi-storied buildings situated in Seoul, South Korea, has been used. The collected data is provided as input to the data acquisition layer. In the pre-processing layer afterwards, several data cleaning and preprocessing schemes are applied to the input data for the removal of abnormalities. Preprocessing further consisted of two processes, namely the computation of statistical moments (mean, variance, skewness, and kurtosis) and data normalization. In the prediction layer, the feed forward back propagation neural network has been used on normalized data and data with statistical moments. In the performance evaluation layer, the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE) have been used to measure the performance of the proposed approach. The average values for data with statistical moments of MAE, MAPE, and RMSE are 4.3266, 11.9617, and 5.4625 respectively. These values of the statistical measures for data with statistical moments are less as compared to simple data and normalized data which indicates that the performance of the feed forward back propagation neural network (FFBPNN) on data with statistical moments is better when compared to simple data and normalized data.

Publisher

MDPI AG

Reference23 articles.

1. Smart Homes Automation https://www.i-scoop.eu/smart-home-home-automation/

2. Gartner Survey Shows Connected Home Solutions Adoption Remains Limited to Earlyadopters https://www.gartner.com/en/newsroom/press-releases/2017-03-06-gartner-survey-shows-connected-home-solutions-adoption-remains-limited-to-e.arly-adopters

3. 2017 Energy Efficiency Indicator Survey https://www.johnsoncontrols.com/media-center/news/press-releases/2017/10/12/-/media/d23ec7c884d34719b0ec5b00d3a8abe2.ashx

4. A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

5. Statistical Features Based Approach (SFBA) for Hourly Energy Consumption Prediction Using Neural Network

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3