A Survey of Machine Learning in Edge Computing: Techniques, Frameworks, Applications, Issues, and Research Directions

Author:

Jouini Oumayma12ORCID,Sethom Kaouthar1,Namoun Abdallah3ORCID,Aljohani Nasser3ORCID,Alanazi Meshari Huwaytim4,Alanazi Mohammad N.5

Affiliation:

1. Innov’COM Laboratory, Higher School of Communication of Tunis (SUPCOM), Technopark Elghazala, Ariana 2083, Tunisia

2. National Engineering School of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia

3. Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah 42351, Saudi Arabia

4. Computer Science Department, College of Sciences, Northern Border University, Arar 91431, Saudi Arabia

5. College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia

Abstract

Internet of Things (IoT) devices often operate with limited resources while interacting with users and their environment, generating a wealth of data. Machine learning models interpret such sensor data, enabling accurate predictions and informed decisions. However, the sheer volume of data from billions of devices can overwhelm networks, making traditional cloud data processing inefficient for IoT applications. This paper presents a comprehensive survey of recent advances in models, architectures, hardware, and design requirements for deploying machine learning on low-resource devices at the edge and in cloud networks. Prominent IoT devices tailored to integrate edge intelligence include Raspberry Pi, NVIDIA’s Jetson, Arduino Nano 33 BLE Sense, STM32 Microcontrollers, SparkFun Edge, Google Coral Dev Board, and Beaglebone AI. These devices are boosted with custom AI frameworks, such as TensorFlow Lite, OpenEI, Core ML, Caffe2, and MXNet, to empower ML and DL tasks (e.g., object detection and gesture recognition). Both traditional machine learning (e.g., random forest, logistic regression) and deep learning methods (e.g., ResNet-50, YOLOv4, LSTM) are deployed on devices, distributed edge, and distributed cloud computing. Moreover, we analyzed 1000 recent publications on “ML in IoT” from IEEE Xplore using support vector machine, random forest, and decision tree classifiers to identify emerging topics and application domains. Hot topics included big data, cloud, edge, multimedia, security, privacy, QoS, and activity recognition, while critical domains included industry, healthcare, agriculture, transportation, smart homes and cities, and assisted living. The major challenges hindering the implementation of edge machine learning include encrypting sensitive user data for security and privacy on edge devices, efficiently managing resources of edge nodes through distributed learning architectures, and balancing the energy limitations of edge devices and the energy demands of machine learning.

Funder

the Deanship of Scientific Research at Northern Border University, Arar, KSA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3