Development of an Automatic Air-Driven 3D-Printed Spinal Posture Corrector

Author:

Asadullah G. M.ORCID,Ali Md. HazratORCID,Hashikura Kotaro,Kamal Md Abdus SamadORCID,Yamada Kou

Abstract

Billions of people are using smartphones and computers with poor posture. A careless attitude towards spinal posture could be dangerous for long-term spinal health, leading eventually to curvature of the spine. Ignoring this fact and its treatment at the early stage will significantly deteriorate spinal health and force surgical intervention. Instead of developing an automated posture-correcting system, the existing research mostly focused on a posture-monitoring system to inform the users via a human interface, e.g., Bluetooth-based devices. Therefore, this paper proposes a novel posture-correction method to automatically prevent spinal disease by facilitating proper posture habits. Specifically, we develop a fluid-driven wearable posture corrector, whose skeleton can be fabricated simply using a 3D printer, to estimate angular posture deviation using sensors and provide appropriate assistance to correct the posture habit of the user. Mounted sensors provide the degree of postural bending, and a controller regulates the appropriate signals to provide a friendly pulling force as a reminder to the user through a fluid-driven actuator. The skeleton with a fluid-driven tool is designed to mimic the motion of the spinal posture by activating the actuator, which injects (or releases) the fluid into (or from) the skeleton frame and regulates forces to reduce the angular deviation of the skeleton. The 3D-printed skeleton with a flexible rubber tube has been experimentally evaluated to ensure proper actuating mechanism through the adjustment of air pressure. It is found that, by applying air pressure in the range of 0 to 101.4 kPa, the skeleton is pulled back approximately 1 N to 7 N forces, minimizing the angle up to 12.44∘ with respect to the initial steady stage, which leads to a maximum posture correction of 32.55% angle (θ) of poor posture. From the above experiments, we ensure the functionality of the proposed posture corrector in producing backward forces to correct the posture automatically.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference23 articles.

1. Design of a fluid-driven 3D printed spinal posture corrector

2. Prevalence Rate of Postural Damages, Disorders and Anomalies Among Computer Users

3. Assessment of stresses in the cervical spine caused by posture and position of the head;Hansraj;Surg. Technol. Int.,2014

4. Design of a secure, biofeedback, head-and-neck posture correction system;Liao;Proceedings of the IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE),2016

5. Smartphone posture monitoring system to prevent unhealthy neck postures;Lawanont;Proceedings of the 12th International Joint Conference on Computer Science and Software Engineering (JCSSE),2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and development of a 3D printed water driven spinal posture corrector;The International Journal of Advanced Manufacturing Technology;2022-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3