Abstract
The Chinese carbon dioxide measurement satellite (TanSat) has collected a large number of measurements in the solar calibration mode. To improve the accuracy of XCO2 retrieval, the Instrument Line Shape (ILS, also known as the slit function) must be accurately determined. In this study, we characterized the on-orbit ILS of TanSat by fitting measured solar irradiance from 2017 to 2018 with a well-calibrated high-spectral-resolution solar reference spectrum. We used various advanced analytical functions and the stretch/sharpen of the tabulated preflight ILS to represent the ILS for each wavelength window, footprint, and band. Using super Gaussian+P7 and the stretch/sharpen functions substantially reduced the fitting residual in O2 A-band and weak CO2 band compared with using the preflight ILS. We found that the difference between the derived ILS width and on-ground preflight ILS was up to −3.5% in the weak CO2 band, depending on footprint and wavelength. The large amplitude of the ILS wings, depending on the wavelength, footprint, and bands, indicated possible uncorrected stray light. Broadening ILS wings will cause additive offset (filling-in) on the deep absorption lines of the spectra, which we confirmed using offline bias correction of the solar-induced fluorescence retrieval. We estimated errors due to the imperfect ILS using simulated TanSat spectra. The results of the simulations showed that XCO2 retrieval is sensitive to errors in the ILS, and 4% uncertainty in the full width of half maximum (FWHM) or 20% uncertainty in the ILS wings can induce an error of up to 1 ppm in the XCO2 retrieval.
Funder
Strategic priority research program of the Chinese Academy of Science
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献