Unique Effects of (R)-Ketamine Compared to (S)-Ketamine on EEG Theta Power in Rats

Author:

Pothorszki Dóra12,Koncz Szabolcs12ORCID,Török Dóra12ORCID,Papp Noémi1,Bagdy György12ORCID

Affiliation:

1. Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, 1089 Budapest, Hungary

2. NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, 1089 Budapest, Hungary

Abstract

Differences in the pharmacological effects of (S)-ketamine and (R)-ketamine are at the focus of research. Clinical data and our rat studies confirmed the antidepressant effect of (S)- but not (R)-ketamine, with similar differences in quantitative electroencephalogram (EEG) and sleep effects. In contrast, studies mainly on mice showed some stronger, preferable effects of (R)-ketamine. EEG theta (5–9 Hz) rhythm originates from the hippocampus, and its power is associated with cognitive functions, attention, and decreased anxiety. To find a brain parameter that is not associated with the antidepressant effect of drugs and may confirm potent in vivo effects of (R)-ketamine in rats, theta EEG power-inducing effects of the two enantiomers were measured and compared for 23 h. EEG-equipped Wistar rats were treated with (R)-ketamine (7.5, 15, 30 mg/kg i.p.), (S)-ketamine (7.5 and 15 mg/kg i.p.), or vehicle at the beginning of the passive phase. Frontoparietal EEG, electromyogram, and motor activity were recorded. (R)-ketamine but not (S)-ketamine dose-dependently increased EEG theta power during wakefulness and rapid eye movement (REM) sleep for 23 h. These results suggest that (R)-ketamine has an effect on a hippocampal function that was not affected by (S)-ketamine and may be associated with neural plasticity and memory encoding.

Funder

Hungarian Academy of Sciences

Hungarian Brain Research Program

Hungarian Brain Research Program 3.0

Thematic Excellence Program

ÚNKP-22-4-I-SE-26 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development, and Innovation Fund

Development of Scientific Workshops of Medical, Health Sciences and Pharmaceutical Educations

ÚNKP-23-3-I-SE-43 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development, and Innovation Fund

Richter Gedeon Talentum Foundation established by Richter Gedeon Plc.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3