Effects of Hot Extrusion on the Microstructure and Wear Properties of A380-Yb Alloy

Author:

Ji Xiaohu123,Xiong Junjie123,Guan Wenle12,Qi Yuxi12,Zhou Lihua3,Li Heng3

Affiliation:

1. School of Mechanical and Vehicle Engineering, West Anhui University, Yueliangdao Road, No. 1, Lu’an 237010, China

2. Innovation Platform of High-Performance Complex Manufacturing Intelligent Decision and Control, West Anhui University, Yueliangdao Road, No. 1, Lu’an 237010, China

3. Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, HFUT, No. 193 Tunxi Road, Baohe District, Hefei 230009, China

Abstract

A380-Yb (Ytterbium) alloy was prepared by the ultrasonic melting casting method, and effects of hot extrusion on the microstructure and wear properties of the alloy were studied. The results indicate that the addition of rare earth Yb can refine the microstructure of the matrix alloy. After hot extrusion (extrusion ratio of 22.56) of the as-cast A380-Yb alloy, the secondary phase in its microstructure was further refined and the distribution became more uniform. EBSD (electron backscatter diffraction) organizational analysis shows that the average GND (geometrically necessary dislocation) density of extruded rare earth aluminum alloy is significantly increased, by 16.5 times that of the cast matrix alloy. In addition, there are a large number of grains parallel to the <111> orientation and <001> orientation in the extrusion direction. The alloy undergoes dynamic recrystallization during hot extrusion, and the proportion of small-angle grain boundaries is significantly reduced. Under the same friction and wear conditions, the wear rate and average friction and wear coefficient of the extruded rare earth aluminum alloy are relatively small, reduced by 53.8% and 42.6%, respectively, compared to the cast matrix alloy. Its wear mechanism is mainly abrasive wear and slight plastic deformation. In addition, the study also found that under fixed other wear conditions, as the friction speed increases, the wear rate of the extruded rare earth aluminum alloy shows a trend of first decreasing and then increasing. However, with the increase in load, its wear rate gradually increases, and the change in wear morphology is consistent with the trend of wear rate. When the wear rate is high, the wear mechanism of the extruded aluminum alloy is mainly delamination wear and adhesive wear, and is sometimes accompanied by severe plastic deformation. When the wear rate is low, its wear mechanism is mainly abrasive wear.

Funder

High-level Talents Research Project of West Anhui University

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3