Biochar Application Reduces Saline–Alkali Stress by Improving Soil Functions and Regulating the Diversity and Abundance of Soil Bacterial Community in Highly Saline–Alkali Paddy Field

Author:

Zhang Yue1,Miao Shihao1,Song Yang1,Wang Xudong1,Jin Feng1

Affiliation:

1. Agronomy College, Jilin Agricultural University, Changchun 130118, China

Abstract

Saline–alkali soils seriously restrict the soil functions and the growth and diversity of soil microorganisms. Biochar can alleviate the negative effects of saline–alkali stress. However, it remains unclear how biochar reduces saline–alkali stress by improving soil functions and regulating the abundance and diversity of the soil bacterial community in highly saline–alkali paddy fields. To address this, a paddy field experiment was conducted in a highly saline–alkali paddy field using two nitrogen application levels (0 and 225 kg ha−1) and four biochar application rates (0, 1.5%, 3.0%, and 4.5% biochar, w/w). The results show that, compared with C0, biochar application, especially when combined with N fertilizer, significantly decreased the soil pH, exchangeable sodium percentage (ESP), saturated paste extract (ECe), and sodium adsorption ratio (SAR) while significantly increasing cation exchange capacity (CEC). These indicated that biochar can effectively reduce saline–alkali stress. Biochar application significantly increased soil content of total nitrogen (TN), alkali-hydrolysable N (AN), available P (AP), available K (AK), soil organic matter (SOM), and soil C/N ratio, both with or without N fertilization. Furthermore, biochar application further increased the relative abundance of bacterial communities and modified the bacterial community structure in highly saline–alkali paddy soils. Under C3N2, C2N2, and C1N2, Chao1 increased by 10.90%, 10.42%, and 1.60% compared to C0N2. Proteobacteria, Bacteroidetes, and Chloroflexi were the top three phyla in bacterial abundance. Biochar significantly increased the abundance of Proteobacteria while reducing Bacteroidetes and Chloroflexi, regardless of N fertilization. Correlation analysis results showed that the improvements in soil chemical and saline–alkali properties, as well as nutrient bioavailability after biochar application, had a positive effect on bacterial communities in highly saline–alkali paddy soils.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Chinese Scholarship Council

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3