ConMLP: MLP-Based Self-Supervised Contrastive Learning for Skeleton Data Analysis and Action Recognition

Author:

Dai Chuan1,Wei Yajuan12,Xu Zhijie1,Chen Minsi1ORCID,Liu Ying3,Fan Jiulun4

Affiliation:

1. School of Computing and Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK

2. School of Cyberspace Security, Xi’an University of Posts and Telecommunications, Xi’an 710061, China

3. International Joint Research Center for Wireless Communication and Information Processing, Xi’an 710121, China

4. School of Communications and Information Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710061, China

Abstract

Human action recognition has drawn significant attention because of its importance in computer vision-based applications. Action recognition based on skeleton sequences has rapidly advanced in the last decade. Conventional deep learning-based approaches are based on extracting skeleton sequences through convolutional operations. Most of these architectures are implemented by learning spatial and temporal features through multiple streams. These studies have enlightened the action recognition endeavor from various algorithmic angles. However, three common issues are observed: (1) The models are usually complicated; therefore, they have a correspondingly higher computational complexity. (2) For supervised learning models, the reliance on labels during training is always a drawback. (3) Implementing large models is not beneficial to real-time applications. To address the above issues, in this paper, we propose a multi-layer perceptron (MLP)-based self-supervised learning framework with a contrastive learning loss function (ConMLP). ConMLP does not require a massive computational setup; it can effectively reduce the consumption of computational resources. Compared with supervised learning frameworks, ConMLP is friendly to the huge amount of unlabeled training data. In addition, it has low requirements for system configuration and is more conducive to being embedded in real-world applications. Extensive experiments show that ConMLP achieves the top one inference result of 96.9% on the NTU RGB+D dataset. This accuracy is higher than the state-of-the-art self-supervised learning method. Meanwhile, ConMLP is also evaluated in a supervised learning manner, which has achieved comparable performance to the state of the art of recognition accuracy.

Funder

Chinese National Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3