ZIF-67 Anchored on MoS2/rGO Heterostructure for Non-Enzymatic and Visible-Light-Sensitive Photoelectrochemical Biosensing

Author:

Fan Qiaolin1,Li Xiao1ORCID,Dong Hui1,Ni Zhonghua1,Hu Tao1

Affiliation:

1. School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China

Abstract

Graphene and graphene-like two-dimensional layered nanomaterials-based photoelectrochemical (PEC) biosensors have recently grown rapidly in popularity thanks to their advantages of high sensitivity and low background signal, which have attracted tremendous attention in ultrahigh sensitive small molecule detection. This work proposes a non-enzymatic and visible-light-sensitive PEC biosensing platform based on ZIF-67@MoS2/rGO composite which is synthesized through a facile and one-step microwave-assisted hydrothermal method. The combination of MoS2 and rGO could construct van der Waals heterostructures, which not only act as visible-light-active nanomaterials, but facilitate charge carriers transfer between the photoelectrode and glassy carbon electrode (GCE). ZIF-67 anchored on MoS2/rGO heterostructures provides large specific surface areas and a high proportion of catalytic sites, which cooperate with MoS2 nanosheets, realizing rapid and efficient enzyme-free electrocatalytic oxidation of glucose. The ZIF-67@MoS2/rGO-modified GCE can realize the rapid and sensitive detection of glucose at low detection voltage, which exhibits a high sensitivity of 12.62 μAmM−1cm−2. Finally, the ZIF-67@MoS2/rGO PEC biosensor is developed by integrating the ZIF-67@MoS2/rGO with a screen-printed electrode (SPE), which exhibits a high sensitivity of 3.479 μAmM−1cm−2 and a low detection limit of 1.39 μM. The biosensor’s selectivity, stability, and repeatability are systematically investigated, and its practicability is evaluated by detecting clinical serum samples.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3