Shielded Cone Coil Array for Non-Invasive Deep Brain Magnetic Stimulation

Author:

Abu Yosef Rawan1ORCID,Sultan Kamel1ORCID,Mobashsher Ahmed Toaha1ORCID,Zare Firuz1,Mills Paul C.2,Abbosh Amin1

Affiliation:

1. The School of Electrical Engineering and Computer Science, The University of Queensland, St. Lucia, QLD 4072, Australia

2. The School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia

Abstract

Non-invasive deep brain stimulation using transcranial magnetic stimulation is a promising technique for treating several neurological disorders, such as Alzheimer’s and Parkinson’s diseases. However, the currently used coils do not demonstrate the required stimulation performance in deep regions of the brain, such as the hippocampus, due to the rapid decay of the field inside the head. This study proposes an array that uses the cone coil method for deep stimulation. This study investigates the impact of magnetic core and shielding on field strength, focality, decay rate, and safety. The coil’s size and shape effects on the electric field distribution in deep brain areas are also examined. The finite element method is used to calculate the induced electric field in a realistic human head model. The simulation results indicate that the magnetic core and shielding increase the electric field intensity and enhance focality but do not improve the field decay rate. However, the decay rate can be reduced by increasing the coil size at the expense of focality. By adopting an optimum cone structure, the proposed five-coil array reduces the electric field attenuation rate to reach the stimulation threshold in deep regions while keeping all other regions within safety limits. In vitro and in vivo experimental results using a head phantom and a dead pig’s head validate the simulated results and confirm that the proposed design is a reliable and efficient candidate for non-invasive deep brain magnetic stimulation.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3