Raman Spectroscopy Spectral Fingerprints of Biomarkers of Traumatic Brain Injury

Author:

Harris Georgia1ORCID,Stickland Clarissa A.1,Lim Matthias1,Goldberg Oppenheimer Pola12ORCID

Affiliation:

1. Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

2. Institute of Healthcare Technologies, Mindelsohn Way, Birmingham B15 2TH, UK

Abstract

Traumatic brain injury (TBI) affects millions of people of all ages around the globe. TBI is notoriously hard to diagnose at the point of care, resulting in incorrect patient management, avoidable death and disability, long-term neurodegenerative complications, and increased costs. It is vital to develop timely, alternative diagnostics for TBI to assist triage and clinical decision-making, complementary to current techniques such as neuroimaging and cognitive assessment. These could deliver rapid, quantitative TBI detection, by obtaining information on biochemical changes from patient’s biofluids. If available, this would reduce mis-triage, save healthcare providers costs (both over- and under-triage are expensive) and improve outcomes by guiding early management. Herein, we utilize Raman spectroscopy-based detection to profile a panel of 18 raw (human, animal, and synthetically derived) TBI-indicative biomarkers (N-acetyl-aspartic acid (NAA), Ganglioside, Glutathione (GSH), Neuron Specific Enolase (NSE), Glial Fibrillary Acidic Protein (GFAP), Ubiquitin C-terminal Hydrolase L1 (UCHL1), Cholesterol, D-Serine, Sphingomyelin, Sulfatides, Cardiolipin, Interleukin-6 (IL-6), S100B, Galactocerebroside, Beta-D-(+)-Glucose, Myo-Inositol, Interleukin-18 (IL-18), Neurofilament Light Chain (NFL)) and their aqueous solution. The subsequently derived unique spectral reference library, exploiting four excitation lasers of 514, 633, 785, and 830 nm, will aid the development of rapid, non-destructive, and label-free spectroscopy-based neuro-diagnostic technologies. These biomolecules, released during cellular damage, provide additional means of diagnosing TBI and assessing the severity of injury. The spectroscopic temporal profiles of the studied biofluid neuro-markers are classed according to their acute, sub-acute, and chronic temporal injury phases and we have further generated detailed peak assignment tables for each brain-specific biomolecule within each injury phase. The intensity ratios of significant peaks, yielding the combined unique spectroscopic barcode for each brain-injury marker, are compared to assess variance between lasers, with the smallest variance found for UCHL1 (σ2 = 0.000164) and the highest for sulfatide (σ2 = 0.158). Overall, this work paves the way for defining and setting the most appropriate diagnostic time window for detection following brain injury. Further rapid and specific detection of these biomarkers, from easily accessible biofluids, would not only enable the triage of TBI, predict outcomes, indicate the progress of recovery, and save healthcare providers costs, but also cement the potential of Raman-based spectroscopy as a powerful tool for neurodiagnostics.

Funder

Wellcome Trust

EPSRC

UK Research and Innovation

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3