Single-Cell Analysis with Silver-Coated Pipette by Combined SERS and SICM

Author:

Dubkov Sergey1,Overchenko Aleksei23ORCID,Novikov Denis1ORCID,Kolmogorov Vasilii24ORCID,Volkova Lidiya5ORCID,Gorelkin Petr2,Erofeev Alexander2,Parkhomenko Yuri2

Affiliation:

1. Institute of Advanced Materials and Technologies, National Research University of Electronic Technology, 124498 Moscow, Russia

2. Research Laboratory of Biophysics, National University of Science and Technology “MISIS” (MISIS), 119049 Moscow, Russia

3. Molecular Nanophotonics Group, Peter Debye Institute for Soft Matter Physics, Leipzig University, 04109 Leipzig, Germany

4. Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia

5. Institute of Nanotechnology of Microelectronics RAS, 115487 Moscow, Russia

Abstract

The study of individual cell processes that occur both on their surface and inside is highly interesting for the development of new medical drugs, cytology and cell technologies. This work presents an original technique for fabricating the silver-coated pipette and its use for the cell analysis by combination with surface-enhanced Raman spectroscopy (SERS) and scanning ion-conducting microscopy (SICM). Unlike the majority of other designs, the pipette opening in our case remains uncovered, which is important for SICM. SERS-active Ag nanoparticles on the pipette surface are formed by vacuum–thermal evaporation followed by annealing. An array of nanoparticles had a diameter on the order of 36 nm and spacing of 12 nm. A two-particle model based on Laplace equations is used to calculate a theoretical enhancement factor (EF). The surface morphology of the samples is investigated by scanning electron microscopy while SICM is used to reveal the surface topography, to evaluate Young’s modulus of living cells and to control an injection of the SERS-active pipettes into them. A Raman microscope–spectrometer was used to collect characteristic SERS spectra of cells and cell components. Local Raman spectra were obtained from the cytoplasm and nucleus of the same HEK-293 cancer cell. The EF of the SERS-active pipette was 7 × 105. As a result, we demonstrate utilizing the silver-coated pipette for both the SICM study and the molecular composition analysis of cytoplasm and the nucleus of living cells by SERS. The probe localization in cells is successfully achieved.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3