Calreticulin Regulates SARS-CoV-2 Spike Protein Turnover and Modulates SARS-CoV-2 Infectivity

Author:

Rahimi Nader1ORCID,White Mitchell R.23,Amraei Razie1,Lotfollahzadeh Saran4,Xia Chaoshuang5,Michalak Marek6,Costello Catherine E.5ORCID,Mühlberger Elke23ORCID

Affiliation:

1. Department of Pathology, School of Medicine, Boston University, Boston, MA 02118, USA

2. Department of Microbiology, School of Medicine, Boston University, Boston, MA 02118, USA

3. National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA

4. Renal Section, Department of Medicine, Medical Center, Boston University, Boston, MA 02118, USA

5. Center for Biomedical Mass Spectrometry, School of Medicine, Boston University, Boston, MA 02118, USA

6. Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada

Abstract

Cardiovascular complications are major clinical hallmarks of acute and post-acute coronavirus disease 2019 (COVID-19). However, the mechanistic details of SARS-CoV-2 infectivity of endothelial cells remain largely unknown. Here, we demonstrate that the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein shares a similarity with the proline-rich binding ena/VASP homology (EVH1) domain and identified the endoplasmic reticulum (ER) resident calreticulin (CALR) as an S-RBD interacting protein. Our biochemical analysis showed that CALR, via its proline-rich (P) domain, interacts with S-RBD and modulates proteostasis of the S protein. Treatment of cells with the proteasomal inhibitor bortezomib increased the expression of the S protein independent of CALR, whereas the lysosomal/autophagy inhibitor bafilomycin 1A, which interferes with the acidification of lysosome, selectively augmented the S protein levels in a CALR-dependent manner. More importantly, the shRNA-mediated knockdown of CALR increased SARS-CoV-2 infection and impaired calcium homeostasis of human endothelial cells. This study provides new insight into the infectivity of SARS-CoV-2, calcium hemostasis, and the role of CALR in the ER-lysosome-dependent proteolysis of the spike protein, which could be associated with cardiovascular complications in COVID-19 patients.

Funder

BUSM Genome Science Institute

NIH grants

BUSM COVID-19 ARC

Fast Grants

Evergrande COVID-19 Response Fund Award from the Massachusetts Consortium on Pathogen Readiness

Natural Sciences & Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3