Research on the Microstructures and Mechanical Properties of Bainite/Martensite Rail Treated by the Controlled-Cooling Process

Author:

Qiu Jiajia,Zhang Min,Tan Zhunli,Gao Guhui,Bai Bingzhe

Abstract

A bainite/martensite multiphase rail is treated by the controlled-cooling process with different finish-cooling temperatures. The simulated temperature–time curves of the position of 5 mm and 15 mm below the rail tread (P5 and P15) express different trends. P5 has greater impact toughness and lower tensile strength than P15. Microstructural characterization was carried out by conducting scanning electron microscopy, X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The greater tensile strength is due to the dispersed ε-carbides hindering the movement of dislocations. The greater impact toughness is attributed to the filmy retained austenite and the smaller effective grain with high-angle boundary. Finite element modeling (FEM) and microstructural characterization reasonably explain the changes of mechanical properties. The present work provides experimental and theoretical guidance for the development of rail with excellent mechanical properties.

Funder

National Key Research and Development Program of China

Fund of Key Laboratory of Advanced Materials of Ministry of Education

Publisher

MDPI AG

Subject

General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3