Wildfire Effects on the Soil Respiration and Bacterial Microbiota Composition in Mediterranean-Type Ecosystems

Author:

Dalias Panagiotis1,Hadjisterkotis Eleftherios1,Omirou Michalis1,Michaelidou Ourania1,Ioannides Ioannis M.1,Neocleous Damianos1ORCID,Christou Anastasis1ORCID

Affiliation:

1. Agricultural Research Institute, P.O. Box 22016, 1516 Nicosia, Cyprus

Abstract

This work provides insights into the effect of fire on soil processes in Mediterranean-type ecosystems in Cyprus. Soil samples from mountainous sites that were subjected to a summer wildfire and adjacent control samples were collected. Incubations were used to estimate basal respiration and isolate soil CO2 release of heterotrophic microorganisms from autotrophic root respiration and heterotrophic respiration from litter decomposition. Physicochemical property changes, bacteria community changes using DNA extraction and 16S rRNA gene analysis, and the effects of ash and fresh litter addition were studied to reveal the microbial composition and the post-fire soil function. Laboratory incubation showed that burned soils constantly showed higher microbial respiration rates compared with control unburned areas, even six months after a fire. Adding ash to unburned samples increased microbial respiration, suggesting that increased nutrient availability positively corelates with the increased release of CO2 from fire-affected soil. Elevated temperatures due to the wildfire exerted significant effects on the composition of soil bacterial microbiota. Nevertheless, the wildfire did not affect the alpha-diversity of soil bacteria. New communities of microorganisms are still able to decompose fresh plant material after a fire, but at a slower rate than natural pre-fire populations.

Publisher

MDPI AG

Reference56 articles.

1. Climate warming increases extreme daily wildfire growth risk in California;Brown;Nature,2023

2. Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., and Shukla, P.R. (2022). Global Warming of 1.5 C: IPCC Special Report on Impacts of Global Warming of 1.5 C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Cambridge University Press.

3. Wildfire smoke impacts respiratory health more than fine particles from other sources: Observational evidence from Southern California;Aguilera;Nat. Commun.,2021

4. The costs and losses of wildfires;Thomas;NIST Spec. Publ.,2017

5. Prioritization of forest restoration projects: Tradeoffs between wildfire protection, ecological restoration and economic objectives;Vogler;Forests,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3