An Efficient Wireless Sensor Network Based on the ESP-MESH Protocol for Indoor and Outdoor Air Quality Monitoring

Author:

Khan Anwar UllaORCID,Khan Mohammad EhtishamORCID,Hasan Mashhood,Zakri WaleedORCID,Alhazmi Waleed,Islam TarikulORCID

Abstract

The main aim of this work is to establish a sensor MESH network using an ESP-MESH networking protocol with the ESP32 MCU (a Wi-Fi-enabled microcontroller) for indoor and outdoor air quality monitoring in real time. Each sensor node is deployed at a different location on the college campus and includes sensor arrays (CO2, CO, and air quality) interfaced with the ESP32. The ESP-MESH networking protocol is a low-cost, easy-to-implement, medium-range, and low-power option. ESP32 microcontrollers are inexpensive and are used to establish the ESP-MESH network that allows numerous sensor nodes spread over a large physical area to be interconnected under the same wireless network to monitor air quality parameters accurately. The data of different air quality parameters (temperature, humidity, PM2.5, gas concentrations, etc.) is taken (every 2 min) from the indoor and outdoor nodes and continuously monitored for 72 min. A custom time-division multiple-access (TDMA) scheduling scheme for energy efficiency is applied to construct an appropriate transmission schedule that reduces the end-to-end transmission time from the sensor nodes to the router. The performance of the MESH network is estimated in terms of the package loss rate (PLR), package fault rate (PFR), and rate of packet delivery (RPD). The value of the RPD is more than 97%, and the value of the PMR and PER for each active node is less than 1.8%, which is under the limit. The results show that the ESP-MESH network protocol offers a considerably good quality of service, mainly for medium-area networks.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3