Balancing Sustainability and Comfort: A Holistic Study of Building Control Strategies That Meet the Global Standards for Efficiency and Thermal Comfort

Author:

Azzi Amal12,Tabaa Mohamed2,Chegari Badr3,Hachimi Hanaa2ORCID

Affiliation:

1. Multidisciplinary Laboratory of Research and Innovation, Moroccan School of Engineering Sciences, Casablanca 20250, Morocco

2. Laboratory of Advanced Systems Engineering, National School of Applied Sciences, Ibn Tofail Univesity Campus, Kenitra 14000, Morocco

3. I2M Laboratory, University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Arts et Métiers Paris Tech, 33400 Talence, France

Abstract

The objective of energy transition is to convert the worldwide energy sector from using fossil fuels to using sources that do not emit carbon by the end of the current century. In order to achieve sustainability in the construction of energy-positive buildings, it is crucial to employ novel approaches to reduce reliance on fossil fuels. Hence, it is essential to develop buildings with very efficient structures to promote sustainable energy practices and minimize the environmental impact. Our aims were to shed some light on the standards, building modeling strategies, and recent advances regarding the methods of control utilized in the building sector and to pinpoint the areas for improvement in the methods of control in buildings in hopes of giving future scholars a clearer understanding of the issues that need to be addressed. Accordingly, we focused on recent works that handle methods of control in buildings, which we filtered based on their approaches and relevance to the subject at hand. Furthermore, we ran a critical analysis of the reviewed works. Our work proves that model predictive control (MPC) is the most commonly used among other methods in combination with AI. However, it still faces some challenges, especially regarding its complexity.

Funder

Moroccan School of Engineering Sciences EMSI Casablanca

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3