Simulation and Economic Analysis of Helium Extraction Process from Natural Gas

Author:

He Yuanyuan1,Chen Rong1,Li Wanting1,Yang Ruiyi1,Yi Chenggao1,Wu Yiping1,Xia Gaohaili2ORCID,Xu Xiaoling2ORCID,Liu Yansheng2

Affiliation:

1. Institute of Project Evaluation, Research Institute of Petroleum Exploration and Development, Beijing 100083, China

2. State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing) at Karamay, Karamay 834000, China

Abstract

The investment estimation of the helium extraction project from natural gas is a crucial step in economically obtaining helium from both domestic and international projects. This article employs Aspen HYSYS to simulate the process and estimate the investment levels of Linde and Exxon Mobil integrated helium extraction processes. We investigate the influence of feed composition and processing capacity on investment costs and product returns. The results indicate that higher helium content of feed correlates with increased equipment investment costs and total capital cost (CAPEX), and that the Linde integrated process is significantly more sensitive to changes in helium content of feed than the Exxon Mobil integrated process. As the helium content of feed rises, the product returns of the two processes are evidently improved, leading to reduced investment payback periods. Both techniques exhibit favorable payback periods when the feed helium content exceeds 0.5 vol%. Nevertheless, elevated nitrogen content in the feed notably escalates the equipment investment costs and total capital costs. Furthermore, an increase in the processing capacity of feed gas leads to a nonlinear increase in total capital costs and annual operating costs. However, the cost per unit of helium extraction diminishes with increasing capacity. In general, the Linde integrated process requires higher separation energy consumption in comparison with the Exxon Mobil integrated process at similar processing capacities. Moreover, the sensitivity analysis shows that helium breakeven price is strongly affected by the price of both LNG and feed gas.

Funder

Xinjiang Uygur Region “One Case, One Policy” Strategic Talent Introduction Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3