Novel Cell Receptor System of Eukaryotes Formed by Previously Unknown Nucleic Acid-Based Receptors

Author:

Tetz VictorORCID,Tetz GeorgeORCID

Abstract

Here, our data provide the first evidence for the existence of a previously unknown receptive system formed by novel DNA- and RNA-based receptors in eukaryotes. This system, named the TR-system, is capable of recognizing and generating a response to different environmental factors and has been shown to orchestrate major vital functions of fungi, mammalian cells, and plants. Recently, we discovered the existence of a similar regulatory system in prokaryotes. These DNA- and RNA-based receptors are localized outside of the membrane forming a type of a network around cells that responds to a variety of chemical, biological, and physical factors and enabled the TR-system to regulate major aspects of eukaryotic cell life as follows: growth, including reproduction and development of multicellular structures; sensitivity to temperature, geomagnetic field, UV, light, and hormones; interaction with viruses; gene expression, recognition and utilization of nutrients. The TR-system was also implicated in cell-memory formation and was determined to be responsible for its maintenance and the forgetting of preceding events. This system is the most distant receptive and regulatory system of the cell that regulates interactions with the outer environment and governs the functions of other receptor-mediated signaling pathways.

Publisher

MDPI AG

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3