From Evaluation to Prediction: Analysis of Diabetic Autonomic Neuropathy Using Sudoscan and Artificial Intelligence

Author:

Toderean Roxana1ORCID,Cobuz Maricela2,Dimian Mihai1ORCID,Cobuz Claudiu34

Affiliation:

1. Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania

2. Department of Neonatology, Sfântul Ioan cel Nou Clinical Hospital of Suceava, 720224 Suceava, Romania

3. Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania

4. Department of Diabetes, Nutrition and Metabolic Diseases, Sfântul Ioan cel Nou Clinical Hospital of Suceava, 720224 Suceava, Romania

Abstract

A dangerous side effect of diabetes that can significantly lower quality of life and raise the death rate of diabetic individuals is diabetic autonomic neuropathy. It is essential to identify and anticipate this disease early on for prompt intervention and care. This study aims to predict this diabetic complication using Sudoscan and artificial intelligence. In this study, 172 individuals with type 1 or type 2 diabetes mellitus provided clinical and demographic information. Sudoscan was used to evaluate the subjects’ sudomotor dysfunction. Statistical methods were used to link various electrochemical skin conductance values with risk factors for neuropathy such as age, BMI, age of diabetes, or biochemical values such as cholesterol and triglycerides. Different machine-learning algorithms were used to predict the risk of diabetic autonomic neuropathy based on the collected data. The accuracy achieved with Logistic Regression is 92.6%, and with the Random Forest model is 96.3%. Lazzy Classifiers also show that six classifiers have a high performance of 97%. Thus, the use of machine learning algorithms in this field of metabolic diseases offers new perceptions for diagnosis, treatment, and prevention, and improves the quality of life of diabetic patients by reducing the incidence of complications related to this disease.

Funder

Stefan cel Mare University of Suceava, Romania

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3