Controlling the Generator in a Series of Hybrid Electric Vehicles Using a Positive Position Feedback Controller

Author:

Alluhydan Khalid1ORCID,Amer Yasser A.2,EL-Sayed Ashraf Taha3ORCID,EL-Sayed Marwa A.4

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

2. Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

3. Department of Basic Science, Modern Academy for Engineering and Technology, Elmokattam, Cairo 11439, Egypt

4. Department of Mathematics, High Institute of Computers and Information Systems, Fifth Settlement, Cairo 11835, Egypt

Abstract

This study investigates the effectiveness of positive position feedback (PPF) in reducing vibration amplitudes in an electric vehicle generator, specifically at super harmonic resonance (SHR) with 1:1 Internal Resonance (IR). Here is a breakdown. Simplified Model: The study uses a simplified nonlinear dynamic model (one degree of freedom, up to fifth-order nonlinear components) with external force, analyzed using the Multiple Time Scales Method (MTSM) with a first-order approximation. Focus on Resonance: The primary focus is on understanding the system’s behavior at SHR with 1:1 IR and how PPF can mitigate vibrations in this specific scenario. Frequency Response and Controller Influence: Frequency response functions are used to analyze the system’s stability with PPF, examining how different controller parameters affect the main system’s dynamics. Validation: Numerical solutions, obtained using the fourth-order Runge–Kutta method (‘RK-4’), are used to demonstrate and evaluate the system’s amplitude with and without PPF. The analytical and numerical results show strong agreement, validating the model’s accuracy. In essence, the research explores using PPF as a vibration control strategy in a specific resonance condition within an electric vehicle generator, using a combination of analytical and numerical methods for analysis and validation.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3