Mitochondrial Proteomes in Neural Cells: A Systematic Review

Author:

Nusir Aya1,Sinclair Patricia2,Kabbani Nadine12ORCID

Affiliation:

1. Interdisciplinary Program in Neuroscience, School of Systems Biology, George Mason University, Fairfax, VA 22030, USA

2. School of Systems Biology, George Mason University, Fairfax, VA 22030, USA

Abstract

Mitochondria are ancient endosymbiotic double membrane organelles that support a wide range of eukaryotic cell functions through energy, metabolism, and cellular control. There are over 1000 known proteins that either reside within the mitochondria or are transiently associated with it. These mitochondrial proteins represent a functional subcellular protein network (mtProteome) that is encoded by mitochondrial and nuclear genomes and significantly varies between cell types and conditions. In neurons, the high metabolic demand and differential energy requirements at the synapses are met by specific modifications to the mtProteome, resulting in alterations in the expression and functional properties of the proteins involved in energy production and quality control, including fission and fusion. The composition of mtProteomes also impacts the localization of mitochondria in axons and dendrites with a growing number of neurodegenerative diseases associated with changes in mitochondrial proteins. This review summarizes the findings on the composition and properties of mtProteomes important for mitochondrial energy production, calcium and lipid signaling, and quality control in neural cells. We highlight strategies in mass spectrometry (MS) proteomic analysis of mtProteomes from cultured cells and tissue. The research into mtProteome composition and function provides opportunities in biomarker discovery and drug development for the treatment of metabolic and neurodegenerative disease.

Funder

Charles Morgan Grant

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Reference178 articles.

1. Margulis, L. (1970). Origin of Eukaryotic Cells: Evidence and Research Implications for a Theory of the Origin and Evolution of Microbial, Plant, and Animal Cells on the Precambrian Earth, Yale University Press.

2. Gray, M.W. (2012). Mitochondrial Evolution. Cold Spring Harb. Perspect. Biol., 4.

3. Mitochondrial Machineries for Protein Import and Assembly;Wiedemann;Annu. Rev. Biochem.,2017

4. The Origin and Diversification of Mitochondria;Roger;Curr. Biol.,2017

5. Interaction of Mammalian Mitochondrial Ribosomes with the Inner Membrane;Liu;J. Biol. Chem.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3