Biomolecular Actions by Intestinal Endotoxemia in Metabolic Syndrome

Author:

Charitos Ioannis Alexandros1ORCID,Aliani Maria1,Tondo Pasquale23ORCID,Venneri Maria4,Castellana Giorgio1ORCID,Scioscia Giulia23ORCID,Castellaneta Francesca5ORCID,Lacedonia Donato23,Carone Mauro1ORCID

Affiliation:

1. Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, “Istitute” of Bari, 70124 Bari, Italy

2. Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy

3. Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy

4. Istituti Clinici Scientifici Maugeri IRCCS, Genomics and Proteomics Laboratory, “Istitute” of Bari, 70124 Bari, Italy

5. School of Clinical Biochemistry and Pathology, University of Bari (Aldo Moro), 70124 Bari, Italy

Abstract

Metabolic syndrome (MetS) is a combination of metabolic disorders that concurrently act as factors promoting systemic pathologies such as atherosclerosis or diabetes mellitus. It is now believed to encompass six main interacting conditions: visceral fat, imbalance of lipids (dyslipidemia), hypertension, insulin resistance (with or without impairing both glucose tolerance and fasting blood sugar), and inflammation. In the last 10 years, there has been a progressive interest through scientific research investigations conducted in the field of metabolomics, confirming a trend to evaluate the role of the metabolome, particularly the intestinal one. The intestinal microbiota (IM) is crucial due to the diversity of microorganisms and their abundance. Consequently, IM dysbiosis and its derivate toxic metabolites have been correlated with MetS. By intervening in these two factors (dysbiosis and consequently the metabolome), we can potentially prevent or slow down the clinical effects of the MetS process. This, in turn, may mitigate dysregulations of intestinal microbiota axes, such as the lung axis, thereby potentially alleviating the negative impact on respiratory pathology, such as the chronic obstructive pulmonary disease. However, the biomolecular mechanisms through which the IM influences the host’s metabolism via a dysbiosis metabolome in both normal and pathological conditions are still unclear. In this study, we seek to provide a description of the knowledge to date of the IM and its metabolome and the factors that influence it. Furthermore, we analyze the interactions between the functions of the IM and the pathophysiology of major metabolic diseases via local and systemic metabolome’s relate endotoxemia.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3