Cocaine Destroys Gray Matter Brain Cells and Accelerates Brain Aging

Author:

Beheshti Iman12

Affiliation:

1. Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada

2. Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 3J7, Canada

Abstract

Introduction: Cocaine use disorder (CUD) is a substance use disorder characterized by a strong desire to obtain, consume, and misuse cocaine. Little is known about how cocaine affects the structure of the brain. In this study, we first investigated the anatomical brain changes in individuals with CUD compared to their matched healthy controls, and then explored whether these anatomical brain abnormalities contribute to considerably accelerated brain aging among this population. Methods: At the first stage, we used anatomical magnetic resonance imaging (MRI) data, voxel-based morphometry (VBM), and deformation-based morphometry techniques to uncover the morphological and macroscopic anatomical brain changes in 74 CUD patients compared to 62 age- and sex-matched healthy controls (HCs) obtained from the SUDMEX CONN dataset, the Mexican MRI dataset of patients with CUD. Then, we computed brain-predicted age difference (i.e., brain-PAD: the brain-predicted age minus the actual age) in CUD and HC groups using a robust brain age estimation framework. Using a multiple regression analysis, we also investigated the regional gray matter (GM) and white matter (WM) changes associated with the brain-PAD. Results: Using a whole-brain VBM analysis, we observed widespread gray matter atrophy in CUD patients located in the temporal lobe, frontal lobe, insula, middle frontal gyrus, superior frontal gyrus, rectal gyrus, and limbic lobe regions compared to the HCs. In contrast, we did not observe any swelling in the GM, changes in the WM, or local brain tissue atrophy or expansion between the CUD and HC groups. Furthermore, we found a significantly higher brain-PAD in CUD patients compared to matched HCs (mean difference = 2.62 years, Cohen’s d = 0.54; t-test = 3.16, p = 0.002). The regression analysis showed significant negative changes in GM volume associated with brain-PAD in the CUD group, particularly in the limbic lobe, subcallosal gyrus, cingulate gyrus, and anterior cingulate regions. Discussion: The results of our investigation reveal that chronic cocaine use is linked to significant changes in gray matter, which hasten the process of structural brain aging in individuals who use the drug. These findings offer valuable insights into the impact of cocaine on the composition of the brain.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference46 articles.

1. The neurobiology of cocaine addiction;Nestler;Sci. Pr. Perspect.,2005

2. Extent of illicit drug use and dependence, and their contribution to the global burden of disease;Degenhardt;Lancet,2012

3. Characterizing the cognitive effects of cocaine: A comprehensive review;Spronk;Neurosci. Biobehav. Rev.,2013

4. The neuroscience of drug reward and addiction;Volkow;Physiol. Rev.,2019

5. Verdejo-Garcia, A., Garcia-Fernandez, G., and Dom, G. (2022). Cognition and addiction. Dialogues Clin. Neurosci.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3