The Effects of Silicone Enclosure Colour on the Function of Optical Sensors

Author:

Frank Garrett,Askari Shahbaz,Raschdorf Katharina,Khosravi Sadra,Kwon Brian K.,Shadgan BabakORCID

Abstract

The colour of the silicone enclosure of an implantable reflectance-based optical probe plays a critical role in sensor performance. Red-coloured probes that are highly reflective to near-infrared light have been found to increase photodetector power by a factor of 6 for wavelengths between 660 and 950 nm and triple the magnitude of measured cardiac pulsations compared to traditional black probes. The increase in photodetector power and cardiac pulsation magnitude is presumably due to increased spatial range resulting from a higher magnitude of superficial tissue scattering. Conversely, probes with highly absorbent colours such as black and blue result in more stable signals and are expected to have higher spatial resolution and depth of penetration.

Funder

Michael Smith Foundation for Health Research

Defense Advanced Research Projects Agency

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementing Effective Noise Reduction Techniques in Implantable NIRS Sensors;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

2. Active noise cancelling in near-infrared spectroscopy;Biophotonics in Exercise Science, Sports Medicine, Health Monitoring Technologies, and Wearables IV;2023-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3