Harnessing Plant Sugar Metabolism for Glycoengineering

Author:

Tang Sophia N.123ORCID,Barnum Collin R.4ORCID,Szarzanowicz Matthew J.235ORCID,Sirirungruang Sasilada235ORCID,Shih Patrick M.2356

Affiliation:

1. Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA

2. Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA

3. Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA

4. Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, CA 95616, USA

5. Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA

6. Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA

Abstract

Plants possess an innate ability to generate vast amounts of sugar and produce a range of sugar-derived compounds that can be utilized for applications in industry, health, and agriculture. Nucleotide sugars lie at the unique intersection of primary and specialized metabolism, enabling the biosynthesis of numerous molecules ranging from small glycosides to complex polysaccharides. Plants are tolerant to perturbations to their balance of nucleotide sugars, allowing for the overproduction of endogenous nucleotide sugars to push flux towards a particular product without necessitating the re-engineering of upstream pathways. Pathways to produce even non-native nucleotide sugars may be introduced to synthesize entirely novel products. Heterologously expressed glycosyltransferases capable of unique sugar chemistries can further widen the synthetic repertoire of a plant, and transporters can increase the amount of nucleotide sugars available to glycosyltransferases. In this opinion piece, we examine recent successes and potential future uses of engineered nucleotide sugar biosynthetic, transport, and utilization pathways to improve the production of target compounds. Additionally, we highlight current efforts to engineer glycosyltransferases. Ultimately, the robust nature of plant sugar biochemistry renders plants a powerful chassis for the production of target glycoconjugates and glycans.

Funder

Joint BioEnergy Institute

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3