Enhanced Soil Fertility and Carbon Sequestration in Urban Green Spaces through the Application of Fe-Modified Biochar Combined with Plant Growth-Promoting Bacteria

Author:

Niu Guoyao1ORCID,He Chiquan1,Mao Shaohua1,Chen Zongze1,Ma Yangyang1,Zhu Yi2ORCID

Affiliation:

1. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China

2. Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China

Abstract

The soil of urban green spaces is severely degraded due to human activities during urbanization, and it is crucial to investigate effective measures that can restore the ecological functions of the soil. This study investigated the effects of plant growth promoting bacteria (Bacillus clausii) and Fe-modified biochar on soil fertility increases and mechanisms of carbon sequestration. Additionally, the effects on C-cycling-related enzyme activity and the bacterial community were also explored. Six treatments included no biochar or Bacillus clausii suspension added (CK), only Bacillus clausii suspension (BC), only biochar (B), only Fe-modified biochar (FeB), biochar combined with Bacillus clausii (BBC), and Fe-modified biochar combined with Bacillus clausii (FeBBC). Compared with other treatments, the FeBBC treatment significantly decreased soil pH, alleviated soil alkalization, and increased the alkali-hydro nitrogen content in the soil. Compared to the individual application of FeB and BC, the FeBBC treatment significantly improved aggregates’ stability and positively improved soil fertility and ecological function. Additionally, compared to the individual application of FeB and BC, the soil organic carbon (SOC), particulate organic carbon (POC), and soil inorganic carbon (SIC) contents for the FeBBC-treated soil increased by 28.46~113.52%, 66.99~434.72%, and 7.34~10.04%, respectively. In the FeBBC treatment, FeB can improve soil physicochemical properties and provide bacterial attachment sites, increase the abundance and diversity of bacterial communities, and promote the uniform distribution of carbon-related bacteria in the soil. Compared to a single ecological restoration method, FeBBC treatment can improve soil fertility and carbon sequestration, providing important reference values for urban green space soil ecological restoration.

Funder

Shanghai Municipal Agricultural and Rural Committee Extension Project

Shanghai Greening and Urban Appearance Management Bureau’s research project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3