A Novel ssDNA Aptamer Targeting Carcinoembryonic Antigen: Selection and Characterization

Author:

Yunussova NigaraORCID,Sypabekova MarzhanORCID,Zhumabekova Zhazira,Matkarimov BakhytORCID,Kanayeva DamiraORCID

Abstract

One of the major causes of a drastically shorter life expectancy and one of the most prevalent diseases in the world today is cancer. Given the data on the rise in cancer cases throughout the world, it is obvious that, despite the diagnostic techniques currently being used, there is a pressing need to develop precise and sensitive techniques for early diagnosis of the disease. A high degree of affinity and specificity towards particular targets is maintained by the short nucleic acid molecules known as aptamers. Aptamers outperform antibodies due to their unique benefits, such as their simplicity in synthesis and modification, lack of toxicity, and long-term stability. Utilizing an accurate recognition element and a robust signal transduction mechanism, molecular diagnostics can be extremely sensitive and specific. In this study, development of new single-stranded DNA aptamers against CEA for use in cancer diagnostics was accomplished using SELEX and NGS methods. As a result of 12 iterative SELEX rounds, nine aptamer candidates against CEA were developed. NGS comparative analysis revealed that round twelve had an enriched number of aptamers that were specifically bound, as opposed to round eight. Among the selected nine sequences characterized by bioinformatics analysis and ELONA, an aptamer sequence with the highest specificity and affinity for the target protein was identified and further examined. Aptamer sequence (6) was screened in a concentration-dependent assay, specificity analysis was performed, and its potential secondary and tertiary structures were predicted, which enabled us to test one of the possible putative interactions with CEA. Finally, aptamer sequence (6) labelled with a Cy5 fluorescent tag was used in confocal microscopy to observe its binding towards the CEA expressed in HT-29 human colon adenocarcinoma cell line.

Funder

Science Committee of the Ministry of Science and Higher Education (MSHE) of the Republic of Kazakhstan

Nazarbayev University (NU)

MSHE

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference67 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3