Affiliation:
1. School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract
Conventional single-component quantum dots (QDs) suffer from low recombination rates of photogenerated electrons and holes, which hinders their ability to meet the requirements for LED and laser applications. Therefore, it is urgent to design multicomponent heterojunction nanocrystals with these properties. Herein, we used CdSe quantum dot nanocrystals as a typical model, which were synthesized by means of a colloidal chemistry method at high temperatures. Then, CdS with a wide band gap was used to encapsulate the CdSe QDs, forming a CdSe@CdS core@shell heterojunction. Finally, the CdSe@CdS core@shell was modified through the growth of the ZnS shell to obtain CdSe@CdS@ZnS heterojunction nanocrystal hybrids. The morphologies, phases, structures and performance characteristics of CdSe@CdS@ZnS were evaluated using various analytical techniques, including transmission electron microscopy, X-ray diffraction, UV-vis absorption spectroscopy, fluorescence spectroscopy and time-resolved transient photoluminescence spectroscopy. The results show that the energy band structure is transformed from type II to type I after the ZnS growth. The photoluminescence lifetime increases from 41.4 ns to 88.8 ns and the photoluminescence quantum efficiency reaches 17.05% compared with that of pristine CdSe QDs. This paper provides a fundamental study and a new route for studying light-emitting devices and biological imaging based on multicomponent QDs.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanghai
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献