Modeling Daily and Monthly Water Quality Indicators in a Canal Using a Hybrid Wavelet-Based Support Vector Regression Structure

Author:

Wang Yuxin,Yuan Yuan,Pan Ye,Fan Zhengqiu

Abstract

Accurate prediction of water quality indicators plays an important role in the effective management of water resources. The models which studied limited water quality indicators in natural rivers may give inadequate guidance for managing a canal being used for water diversion. In this study, a hybrid structure (WA-PSO-SVR) based on wavelet analysis (WA) coupled with support vector regression (SVR) and particle swarm optimization (PSO) algorithms was developed to model three water quality indicators, chemical oxygen demand determined by KMnO4 (CODMn), ammonia nitrogen (NH3-N), and dissolved oxygen (DO), in water from the Grand Canal from Beijing to Hangzhou. Modeling was independently conducted over daily and monthly time scales. The results demonstrated that the hybrid WA-PSO-SVR model was able to effectively predict non-linear stationary and non-stationary time series and outperformed two other models (PSO-SVR and a standalone SVR), especially for extreme values prediction. Daily predictions were more accurate than monthly predictions, indicating that the hybrid model was more suitable for short-term predictions in this case. It also demonstrated that using the autocorrelation and partial autocorrelation of time series enabled the construction of appropriate models for water quality prediction. The results contribute to water quality monitoring and better management for water diversion.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3