Grey Box Modelling of Decanter Centrifuges by Coupling a Numerical Process Model with a Neural Network

Author:

Menesklou Philipp,Sinn TabeaORCID,Nirschl Hermann,Gleiss Marco

Abstract

Continuously operating decanter centrifuges are often applied for solid-liquid separation in the chemical and mining industries. Simulation tools can assist in the configuration and optimisation of separation processes by, e.g., controlling the quality characteristics of the product. Increasing computation power has led to a renewed interest in hybrid models (subsequently named grey box model), which combine parametric and non-paramteric models. In this article, a grey box model for the simulation of the mechanical dewatering of a finely dispersed product in decanter centrifuges is discussed. Here, the grey box model consists of a mechanistic model (as white box model) presented in a previous research article and a neural network (as black box model). Experimentally determined data is used to train the neural network in the area of application. The mechanistic approach considers the settling behaviour, the sediment consolidation, and the sediment transport. In conclusion, the settings of the neural network and the results of the grey box model and white box model are compared and discussed. Now, the overall grey box model is able to increase the accuracy of the simulation and physical effects that are not modelled yet are integrated by training of a neural network using experimental data.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3